ОКПД2 26.51.66.116 ТН ВЭД 9030 32 000 9

ПРИБОРЫ КОНТРОЛЯ И ДИАГНОСТИКИ ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

158.00.00.000 РЭ ВЕРСИЯ № 0 Настоящее руководство по эксплуатации (далее – РЭ) предназначено для ознакомления с принципом работы, устройством и конструкцией прибора контроля высоковольтных выключателей ПКВ/М15М (далее – прибор) с целью правильной его эксплуатации. РЭ состоит из одной книги.

К работе с прибором допускаются лица, имеющие квалификационную группу по электробезопасности не ниже третьей, знающие устройство проверяемого электрооборудования и изучившие данное РЭ.

Прибор имеет второй класс защиты от поражения электрическим током

Перед подключением прибора главная токовая цепь высоковольтного оборудования должна быть обесточена, отключена от сети высокого напряжения и заземлена с обеих сторон во избежание поражения электрическим током наведенного напряжения (выкатные выключатели КРУ, находящиеся в ремонтном положении, заземлять не требуется).

Запрещается проводить измерения во время заряда аккумуляторной батареи.

Содержание

1.	Описание и работа	3
	1.1. Назначение прибора	3
	1.2. Технические характеристики	3
	1.2.1. Защиты прибора	4
	1.2.2. Органы управления	5
	1.2.3. Особенности и функции прибора	6
	1.3. Устройство и работа	6
	1.3.1. Устройство измерительного блока	6
	1.4. Маркировка и пломбирование	7
	1.5. Упаковка	8
2.	Использование прибора	8
	2.1. Эксплуатационные ограничения	8
	2.2. Подготовка прибора к работе	9
	2.3. Работа с прибором	9
	2.3.1. Подготовка прибора к запуску на измерение	10
	2.3.2. Проведение измерения	12
	2.3.3. Вывод полученных результатов	15
	2.3.4. Работа с архивом	16
	2.3.5. Настройка сервисных функций	17
	2.3.6. Активация прибора	21
3.	Техническое обслуживание	22
4.	Транспортирование и хранение	23
5.	Утилизация	24
6.	Сведения о предприятии-изготовителе	24

1. Описание и работа

1.1. Назначение прибора

Прибор предназначен для определения методом неразрушающей диагностики технического состояния высоковольтных выключателей, выведенных из-под высокого электрического напряжения, во время проведения периодического контроля и ремонта.

Прибор применяется на предприятиях электроэнергетики, а также на других предприятиях, имеющих высоковольтное коммутационное оборудование.

1.2. Технические характеристики

Технические характеристики прибора приведены в таблице 1.

Наименование характеристики	Значение
Метрологические характеристи	(N
Количество каналов измерений перемещений, шт.	1
	от 1 до 500
Диапазоны измерения линейных перемещений, мм	от 1 до 600
	от 1 до 900
Дискретность измерений линейных перемещений, мм	0,5
Пределы допускаемой основной абсолютной	. 1
погрешности измерений линейных перемещений, мм	±Ι
Диапазон измерений угловых перемещений, град	от 0,09 до 360,00
Дискретность измерений угловых перемещений, град	0,09
Пределы допускаемой основной абсолютной	10 56
погрешности измерений угловых перемещений, град	±0,56
Количество каналов полюсов, шт.	3
Диапазон измерений интервалов времени, мс	от 0,1 до 10 000
Дискретность измерения интервалов времени, мс	0,1
Предеры допускаемой основной абсолютной	±10 ⁻⁴ [1+tx],
пределы допускаемой основной ассолютной	где tx- измеряемый
погрешности измерении интервалов времени, с	интервал времени, с
Количество каналов управления высоковольтным	2
выключателем, шт.	2
Диапазон коммутируемого электрическое напряжение	
каналами управления высоковольтным	
выключателем, В	+300
– постоянного тока	от 0 до 250
– переменного тока	01 0 40 200
Диапазон измерений силы тока каналами блока	+20
управления высоковольтным выключателем, А	0

Таблица 1 – Технические характеристики

Наименование характеристики	Значение
Пределы основной абсолютной погрешности	±[0,1+0,005· lx]
измерения силы тока каналами управления	где Iх – модуль
высоковольтным выключателем, А	измеряемого тока в А
Технические характеристики	
	«B», «O», «BO»,
	«OB», «OBO», «OBO-
циклы управления	B»,
	«OBO-BO»
Напряжение заряда аккумулятора, В	5; 9; 12
Ток заряда аккумулятора, мА, не более	3000
Габаритные размеры измерительного блока, мм	250x150x60
Масса, кг, не более	1,3
- измерительного блока	4
 прибора в стандартной комплектации 	
Степень защиты измерительного блока по ГОСТ 14254	IP54
Класс защиты от поражения электрическим током	II

1.2.1. Защиты прибора

ПКВ/М15М имеет следующие виды защиты:

- автоматическое выключение процесса измерения при превышении температуры его радиоэлементов критического значения;
- защита встроенной аккумуляторной батареи (АКБ) от перегрева, токов короткого замыкания, переразряда и перезаряда;
- блокировка заряда АКБ при температуре его корпуса ниже 0 °С;
- -защита от короткого замыкания по каналам управления выключателем;
- предохранители по каналам управления высоковольтным выключателем.

1.2.2. Органы управления

В таблице 2 указано назначение разъемов, органов управления и индикации, а их расположение соответствует рисунку 1.

Рисунок 1 – Расположение разъемов и органов управления

Таблица 2 – Органы управления и разъемы

Поз №	Обозначение и название	Назначение		
1	← ↓	Кнопки для перемещения курсора или изменения значений величин		
2	-	Дисплей сенсорный цветной графический		
	\triangleright	Кнопка запуска измерений		
3	L L	Кнопка «Ввод», для подтверждения выполненных действий		
	X	Кнопка отмены выполняемого действия		
4	-	Кнопка включения/отключения питания прибора		
5		Функциональные кнопки – кнопки, изменяющие		
	F1, F2, F3, F4	свое назначение в зависимости от информации,		
		выведенной на дисплей		
6	-	Разъем USB для подключения к прибору зарядного устройства или к ПК		

Поз №	Обозначение и название	Назначение
7	РАСШ.	Разъем расширения (не используется)
8	ДАТЧИК	Разъем для подключения кабеля датчика
9	ABC	Разъем для подключения разветвителя кабелей полюсов
10	T6.3A	Замедленные предохранители с током срабатывания 6,3 А
11	B, O	Разъемы для подключения кабелей управления выключателей

1.2.3. Особенности и функции прибора

Основные особенности и функции прибора представлены в таблице 3.

Таблица 🕽	3 – Основные	особенности	и функции
-----------	--------------	-------------	-----------

№ п/п	Описание особенностей и функций			
1	Измерение параметров хода и скорости движения главных контактов (при наличии датчиков перемещения)			
2	Измерение собственного времени включения и отключения высоковольтного выключателя			
3	Вывод на дисплей результатов измерения			
4	Простые и сложные циклы управления высоковольтным выключателем			
5	Запуск прибора на измерение от сигналов, поступающих от выключателя			
6	Передача результатов измерений на мобильное устройство или на персональный компьютер (ПК)			
7	Управление с мобильного устройства			
8	Автономная работа от встроенного аккумулятора			
9	Автоматическое выключение неиспользуемого прибора через заданное время от момента последнего действия с прибором для экономии заряда аккумулятора			
10	Многоязычный интерфейс (русский, английский)			

1.3. Устройство и работа

1.3.1. Устройство измерительного блока

Структурная схема измерительного блока приведена на рисунке 2. Измерительный блок, в соответствии с рисунком 2, состоит из блока USB для связи прибора с ПК и заряда встроенного АКБ, микро-ЭВМ с дисплеем и клавиатурой, каналов связи с объектом и Bluetooth для связи с ПК или мобильным устройством.

Рисунок 2 – Структурная схема измерительного блока

1.4. Маркировка и пломбирование

Маркировка измерительного блока приведена в таблице 4

Маркировка	Пояснение маркировки	
ПКВ/М15М ПРИБОР КОНТРОЛЯ ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЕЙ	Тип и наименование прибора соответственно	
	Двойная изоляция	
•	Обозначение полярности подключения кабелей управления	

Таблица 4 – Маркировка измерительного блока

	Значение максимального входного
~250 V, 14 A	напряжения и максимального тока,
300 V, 20 A	подаваемого на каналы управления
	высоковольтным выключателем
\wedge	Внимание опасность! Смотри
	сопроводительную документацию
CAT II 300V	Категория перенапряжения
скб <mark>{}</mark> ЭП°	Торговая марка производителя
www.skbpribor.ru	Адрес сайта изготовителя

На задней части прибора расположена информационная табличка с обозначением типа прибора, заводского номера и года выпуска прибора в виде цифро-буквенного обозначения.

Пломба предприятия-изготовителя наносится на углубление под крепежный винт с задней стороны корпуса.

1.5. Упаковка

Прибор упаковывают в закрытых вентилируемых помещениях при температуре окружающего воздуха не ниже плюс 15 °C и относительной влажности воздуха до 80 % при отсутствии в окружающей среде агрессивных примесей.

Упаковываемый прибор должен иметь температуру не ниже температуры окружающего воздуха.

2. Использование прибора

2.1. Эксплуатационные ограничения

Условия эксплуатации приведены в таблице 5.

Климатические факторы	Нормальные условия	Рабочие условия
Температура окружающего воздуха при эксплуатации прибора, ⁰С	от плюс 15 до плюс 25	от минус 20 до плюс 55
Температура окружающего воздуха в режиме заряда встроенной АКБ, °С	от 0 до плюс 40	
Относительная влажность воздуха, %	не более 80	не более 95 (без конденсации влаги)
Атмосферное давление, кПа (мм рт.ст.)	от 84 (от 630	до 106) до 795)

Таблица 5 – Условия эксплуатации

2.2. Подготовка прибора к работе

К работе с прибором допускается квалифицированный персонал.

Внешним осмотром убедиться в отсутствии повреждений прибора и кабелей.

После хранения или транспортирования прибора при отрицательной температуре окружающего воздуха его следует выдержать в нормальных условиях не менее четырех часов.

Зарядить АКБ при необходимости.

Подключить зарядное устройство из комплекта, к прибору. Прибор автоматически включится и перейдет в режим заряда АКБ.

Если с прибором в течение заданного (при помощи настроек) времени не выполняются какие-нибудь действия (не нажимаются кнопки или не происходит запуск прибора на измерение), то по истечении этого времени у него гаснет подсветка дисплея или автоматически выключается в зависимости от заданных настроек. Для повторного включения длительно нажать кнопку включения питания (рисунок 1, позиция 4,).

2.3. Работа с прибором

Для включения прибора нажмите и удерживайте кнопку включения/отключения питания прибора до появления логотипа предприятия-изготовителя на дисплеи.

После загрузки на дисплей прибора выводится главное меню в соответствии с рисунком 3.

Рисунок 3 – Главное меню прибора

- текущее время и дата, количество сохраненных измерений в архиве и уровень заряда АКБ;
- 2 окно режима измерения;
- 3 архив;
- 4 настройки.

Чтобы выключить прибор необходимо длительно нажать кнопку включения/отключения питания прибора.

2.3.1. Подготовка прибора к запуску на измерение

Для входа в режим «Измерение» необходимо коснуться в главном

меню иконки (рисунок 3, позиция 2) или нажать клавишу F2. Откроется окно в соответствии с рисунком 4.

Рисунок 4 – Окно "Измерение"

- 1 название окна;
- 2 индикаторы состояния высоковольтного выключателя.

 - состояние каналов управление: присутствует напряжение;
 - отсутствует напряжение.
 - значение датчика линейного или углового перемещения;
- 3 кнопки настройки Измерения

Для изменения режима измерения необходимо коснуться кнопки РЕЖИМ или нажать клавишу F1 и выбрать необходимый режим:

- Измерение дает возможность производить измерение параметров высоковольтных выключателей и осуществлять его управление.
- Пульт удаленное управление выключателем (позволяет включить, выключить высоковольтный выключатель или запустить последовательность операций «В» и «О»).

- Ресурс проведение испытаний многократным опробованием (ресурсные испытания) можно задать количество циклов от 1 до 100.
- Бл.Прыг режим проверки «защиты от прыгания» высоковольтного выключателя

Для изменения типа цикла коснуться кнопки ЦИКЛ или нажать клавишу F2 и выбрать необходимый тип цикла.

Для изменения заданных настроек измерения коснуться кнопки НАСТРОЙКИ или нажать клавишу F3. Откроется меню с настраиваемыми параметрами в соответствии с рисунком 5. Описание настраиваемых параметров приведено в таблице 6.

	НАСТРОЙКИ	00/01/00 00:00 ME	M:80/10 □ \$100%
2			ATTA
	Триггер :	Внутренний	ξO}
	Датчик:	ДП12	
	Проверка запуска :	Да	ИЗМЕНИТЬ
	Длительность , ms :	300	
	Цикл:	o	3
	Длительность О, ms :	240	Сыросить

Рисунок 5 – Окно настроек режима «Измерение»

- 1 настройки измерения:
- 2 изменить настройку;
- 3 сброс.

или коснуться

Для изменения параметров нажать клавиши кнопки ИЗМЕНИТЬ и установить требуемое значение, для ввода коснуться само значение.

Таблица 6 – Описание нас	гроек режима	«Измерение»
--------------------------	--------------	-------------

Пункт меню	Обозначение	Описание	
_	Ручной	Ручной запуск измерения. Измерение начинается сразу после запуска н измерения.	
григгер	Внешний	Внешний запуск измерения.	
		Измерение начинается	по
		возникновению/исчезновению напряжения	на
		контактах кабеля управления.	

Пункт меню	Обозначение	Описание
	Гл. Конт.	Запуск по состоянию каналов полюсов. Измерение начинается по замыканию/размыканию каналов полюсов.
	Внутренний	Внутренний запуск измерения Измерение начинается синхронно с сигналом по каналу управления высоковольтным выключателем. Прибор коммутирует оперативный ток местного пуска в приводе высоковольтного выключателя.
	ДП12	Датчик линейного перемещения
Потник	ДП21	Датчик углового перемещения
датчик	ДП32	Датчик линейного перемещения
	Нет	Датчик не используется
Проверка запуска	Да/Нет	Проверяет правильность подключения к объекту измерения
Длительность. ms	1020500	Общее время измерения, вычисляется автоматически при задании длительностей О и В, задержек и пауз.
Цикл	«B», «O», «BO», «OB», «OBO», «OBO-B», «OBO-BO»	Циклы управления высоковольтным выключателем
Длительность O, ms	10300	Диапазон длительности операции отключения (О)
Длительность B, ms	10500	Диапазон длительности операции включения (В)
Задержка О, ms	10500	Диапазон длительности задержки отключения
Задержка B, ms	100500	Диапазон длительности задержки включения
Пауза, s	5200	Минимальное время паузы между коммутациями при проведении ресурсных испытаний

Для сохранения заданных настроек и выхода в окно «Измерение» необходимо коснуться кнопки возврата в предыдущее окно ← или нажать клавишу X.

2.3.2. Проведение измерения

Чтобы приступить к измерениям параметров высоковольтного выключателя необходимо в соответствии с требованиями Охраны труда и Техники безопасности вывести выключатель из-под напряжения, подготовить рабочее место. Прибор разместите как можно ближе к контролируемому выключателю.

Внимание! При подключении измерительных кабелей выключатель должен быть заземлен с двух сторон. Порядок подключения измерительных кабелей: сначала к выключателю, затем к прибору. Установку датчика перемещения осуществлять на отключенном выключателе с разряженными пружинами включения/отключения.

2.3.2.1 Измерение параметров выключателя при внутреннем или внешнем триггере

Руководствуясь методикой выполнения измерений параметров контролируемого высоковольтного выключателя, подключить зажимы измерительных кабелей и установите соответствующий датчик перемещений на проверяемое оборудование. Подключите прибор к выключателю, как показано на рисунке 6.

Рисунок 6 - Схема подключения прибора к высоковольтному выключателю при измерении с внутренним или внешним триггером

Зажимы кабелей полюсов подключить к главным контактам выключателя.

Зажимы кабелей управления подключить согласно электрической схеме проверяемого оборудования через клеммные колодки. Присоединять зажимы кабелей управления напрямую к электромагнитам включения и отключения не рекомендуется.

Перед проведением измерения разземлите выключатель с одной стороны, в соответствии с рисунком 6.

Включите прибор, выполните настройки, описанные в п. 2.3.1 и запустите прибор на измерение кнопкой ПУСК или клавишей подтвердите выбранное действие.

После завершения измерения прибор обработает данные и выдаст результат измерения согласно п.2.3.3.

После проведения измерений, восстановите исходную схему проверяемого оборудования.

2.3.2.2 Измерение параметров выключателя при триггере «Гл.конт.»

Руководствуясь методикой выполнения измерений параметров контролируемого высоковольтного выключателя, подключить зажимы измерительных кабелей и установите соответствующий датчик перемещений на проверяемое оборудование. Подключите прибор к выключателю, как показано на рисунке 7.

Рисунок 7 - Схема подключения прибора к высоковольтному выключателю при измерении с триггером «Гл.конт.»

Зажимы кабелей полюсов подключить к главным контактам выключателя.

Перед проведением измерения разземлите выключатель с одной стороны, в соответствии с рисунком 7.

Включите прибор, выполните настройки, описанные в п. 2.3.1 и

запустите прибор на измерение кнопкой ПУСК или клавишей 🕨 подтвердите выбранное действие.

После завершения измерения прибор обработает данные и выдаст результат измерения согласно п.2.3.3.

После проведения измерений, восстановите исходную схему проверяемого оборудования.

2.3.3. Вывод полученных результатов

После проведения измерения, откроется окно результата измерения, как показано на рисунке 8.

Рисунок 8 - Окно результата измерения

Обозначение	Описание		
Время ВО	Длительность цикла ВО		
Время Тр	Бесконтактная пауза		
Время В / Время О	Время включения/отключения полюса		
Разновременность	Разновременность замыкания/размыкания контактов выключателя		
V AVG	Средняя скорость при включении/отключении		
Разновремен. А-В-С	Разновременность между полюсами AB, BC, CA		
Время дребезга	Время дребезга контактов		
Полный ход	Полный ход		
Перелет	Максимальное расстояние, на которое переместилась контролируемая подвижная часть выключателя в прямом направлении от полного хода		
Отскок	Максимальное расстояние, на которое переместилась контролируемая подвижная часть выключателя в обратном направлении от полного хода		
Отскок [СВ]	Максимальное расстояние, на которое переместилась контролируемая подвижная часть выключателя в обратном направлении от перелета		
Время до первого замыкания	Ход до первого замыкания контактов полюса		
Время после размыкания	Ход после первого размыкания контактов полюсов		
Ход в контактах	Ход до размыкания контактов полюса		
Вжим	Ход после замыкания контактов полюса до полного хода		
Дребезг по ходу	Ход от точки первого вибрационного замыкания (размыкания) до дочки окончательного замыкания (размыкания) контактов полюса		
Разность по ходу	Разность хода между первым замкнувшимся (разомкнувшимся) контактом и последний замкнувшимся (разомкнувшимся) контактом		
Время CMD	Время командного импульса включения/отключения		
Макс. магнитный ток	Максимальное значение силы тока импульса включения/отключения		
Средний магнитный ток	Среднее значение силы тока импульса включения/отключения		

Таблица 7 – Условные обозначения

2.3.4. Работа с архивом

Для входа в архив, необходимо в главном меню коснуться кнопки

(рисунок 3, позиция 3) или нажать клавишу F3. Откроется окно в соответствии с рисунком 9.

← АРХИВ	0	0/01/00 00:00 ME	M:80/10 □ \$100%
05/2021 06:24	Цикл: Датчик:	ОВО-В Нет	
# 7 19/09/2021 06:24	Триггер: Датчик:	Внешний Нет	открыть
() # 6 19/09/2021 06:24	Цикл: Датчик:	ово ДП12	
18/01/2022 06:08	цикл: Датчик:	ОвО-в Нет	очистить

Рисунок 9 - Окно АРХИВ

Архив представляет собой 10 ячеек, в которые сохраняются результаты измерений. Каждая ячейка пронумерована и содержат дату и время проведения измерения, тип запуска или цикла, наличие датчика и его тип. После заполнения всех ячеек памяти измерение с наименьшим порядковым номером удаляется, а на его место записывается новое измерение с новым порядковым номером. И так далее, по кругу.

Для навигации по списку используются клавиши

и **Ф**и **↓**, для

просмотра данных результата измерений коснуться кнопки нажать клавишу

2.3.5. Настройка сервисных функций

Для перехода в окно настроек сервисных функций следует, находясь

в главном меню, коснуться кнопки (рисунок 3, позиция 4) или нажать клавишу F4. Внешний вид окна соответствует рисунку 10. Перечень и назначение кнопок окна приведены в таблице 8.

Рисунок 10 – Окно настроек сервисных функций

Таблица 8 – Перечень и назначение кнопок

Команда	Назначение	
язык	Кнопка выбора языка интерфейса	
ДАТА/ВРЕМЯ	Кнопка вызова окна для изменения календарной даты и текущего времени	
Тема	Кнопка выбора темы интерфейса	
(Д) экономия	Кнопка вызова окна задания интервала времени от момента последнего действия с прибором до момента отключения подсветки дисплея или его выключения.	
Связь с пк	Кнопка выбора канала связи с ПК	
0 ПРИБОРЕ	Кнопка вызова окна с информацией о приборе	

Настройки сохраняются при выходе из окна настроек сервисных функций. Для выхода из меню настроек необходимо коснуться кнопки или нажать клавишу X.

2.3.5.1 Смена языка интерфейса

Для смены языка интерфейса необходимо коснуться кнопки язык или навести на нее курсор и нажать клавишу \checkmark , появится окно с доступными языками интерфейса. Касанием выделить необходимый язык интерфейса, для применения настроек коснутся кнопки \leftarrow или нажать клавишу X.

2.3.5.2 Задание календарной даты и текущего времени

Для перехода в окно изменения календарной даты и текущего времени следует коснуться кнопки (или навести на нее курсор и нажать кнопку . Окно изменения даты/времени соответствует рисунку 11.

Рисунок 11 – Окно изменения даты/времени

1 – поля установки текущего времени;

2 – поля установки календарной даты.

Для изменения текущего времени следует касанием (или клавишами навигации) выделить поле Часы и касанием кнопок и уменьшить или нажатием клавиш и увеличить или уменьшить значение выбранного поля.

Остальные поля времени и даты изменяются аналогичным образом.

Для применения настроек коснутся кнопки < или нажать клавишу Хи выйти из окна настроек в главное меню.

2.3.5.3 Смена темы интерфейса

вариант, для применения настроек коснутся кнопки ← или нажать клавишу

2.3.5.4 Задание задержки автоматического выключения

Для изменения интервала времени от последнего нажатия кнопки или последнего запуска прибора на измерение до момента его выключения

следует коснуться кнопки ^{экономия}. Откроется окно настроек экономии энергии АКБ в соответствии с рисунком 12.

Рисунок 12 – Окно настройки экономии энергии АКБ

При помощи бегунков задать интервал автовыключения подсветки дисплея равный 15, 30, 60, 120 секунд и интервал автовыключения питания прибора равный 2, 5, 10, 15, 20.

Внимание! Не рекомендуем устанавливать значения автовыключения «Нет», так как это может привести к глубокому разряду АКБ и ее замене.

Для применения настроек коснутся кнопки ←или нажать клавишу Х.

2.3.5.5 Связь с ПК

Для выбора интерфейса связи с ПК необходимо коснуться кнопки

СВЯЗЬ С ПК. В открывшемся окне коснуться кнопки с нужным интерфейсом (USB, Bluetooth, нет), после чего коснуться появившейся кнопки **Применить** или нажать кнопку F1, прибор автоматически перезагрузится.

2.3.5.6 Информация о приборе

. Окно вывода информации о приборе соответствует рисунку 13

- О ПРИБОРЕ	00/01/00 00:00 MEM:80/10 - \$41%
Серийный #	1k
Версия ПО	1.0.00.00
Ревизия	0.0.0.0
Активация	Нет
Код	AAABBBC
ввести код	ц активации

Рисунок 13 - Окно вывода информации о приборе

Информация о приборе содержит идентификатор программного обеспечения и серийный номер прибора, уровень и код активации прибор.

Выход из окна «О приборе» по касанию кнопки 🗧 или нажатию клавиши X

Для получения информации о технической поддержке необходимо нажать клавишу F1 в главном меню прибора (рисунок 3).

2.3.6. Активация прибора

Для активации работы прибора нажмите на клавишу F1 в окне вывода информации о приборе (рисунок 13) появится QR-код со ссылкой на страницу сайта для регистрации прибора. Зарегистрируйте прибор, указав корректную информацию о конечном пользователе, а также о приборе и его номере.

Также зарегистрировать прибор вы можете на официальном сайте производителя: www.skbpribor.ru в разделе ЛИЧНЫЙ КАБИНЕТ.

После регистрации на указный е-mail будет отправлен код активации.

Код активации необходимо ввести в прибор. Перейдите в раздел информация о приборе (см. п.2.3.5.6), коснитесь кнопки ВВЕСТИ КОД

АКТИВАЦИИ или нажмите клавишу 🗲, откроется окно для ввода кода в соответствии с рисунком 14.

/?!-	abc	def	
ghi	jkl	mno	Aa
pqrs	tuv	wxyz	\checkmark
·,		<-	×

Рисунок 14 – Окно ввода ко6да активации

На сенсорном экране введите код набором из шести символов, нажмите кнопку , прибор автоматически проверит правильность введения кода и перезагрузиться.

После перезагрузки прибор будет АКТИВИРОВАН. Все функции прибора станут активны.

3. Техническое обслуживание

Периодически проводить очистку прибора от пыли, грязи, проверять работоспособность.

Проверить работоспособность можно в режиме «Измерение», присоединив к нему измерительные кабели:

1. Замыкая по очереди, зажимы кабеля полюсов с общим зажимом проконтролировать соответствующее состояние на дисплеи прибора.

2. От источника постоянного тока подать на зажимы кабеля управления по каналу В постоянное напряжение 15 В, ток ограничить на 100 мА, проконтролировать на дисплеи соответствующее состояние канала. Аналогично выполнить проверку по каналу О.

3. Подключить датчик линейного или углового перемещения (при наличии в комплекте), перемещать датчик и наблюдая за показаниями прибора убедиться в исправности канала измерения перемещений и датчика.

При длительном хранении рекомендуется подзаряжать АКБ прибора не реже одного раза в шесть месяцев.

Нежелательно опускать уровень заряда АКБ, при эксплуатации прибора, ниже 10 %.

При отказе АКБ ее замена может быть выполнена самостоятельно, только на АКБ производства ООО «СКБ ЭП».

При возникновении неисправности или отказа прибора ремонт следует выполняется на предприятии-изготовителе.

Перечень возможных неисправностей приведен в таблице 9.

Прибор следует отправлять на сервисное обслуживание в полной комплектации, очищенным от пыли и грязи.

Рекомендуемый межкалибровочный интервал – 1 года.

Межповерочный интервал -1 год.

Признаки	Причина	Способ устранения	
Прибор не включается	АКБ разряжена	Зарядить АКБ	
	Неисправна АКБ	Заменить АКБ. Обратиться к предприятию- изготовителю прибора	
	Неисправно зарядное устройство	Заменить зарядное устройство	
Ошибка 0x04: Нет активности	Нет импульсов по каналам управления и каналам полюсов. Обрыв в кабеле управления/кабеле полюсов	Проверить правильность	
Ошибка 0x41: Нет напряжения	Нет напряжения на зажимах кабеля управления. Обрыв в кабеле управления.	подключения измерительных кабелей к проверяемому оборудованию	
Ошибка 0x6b: Короткое замыкание	Короткое замыкание на зажимах кабеля управления		
Ошибка 0х4е: ВВ в невер. полож.	Высоковольтный выключатель в неверном положении	Проверить настройки измерения в приборе и правильность подключения измерительных кабелей к проверяемому оборудованию	
Ошибка 0х6а: Перегрев	Перегрев силовых ключей прибора выше плюс 90 °C	Отключить прибор, подождать пока температура не снизится.	
Ошибка 0x62: Не калиброван	Прибор не откалиброван. Сбой ПО.	Обратиться к предприятию- изготовителю прибора	

Таблица 9 – Возможные неисправности прибора

4. Транспортирование и хранение

Прибор должен перевозиться в транспортной таре, в закрытом транспортном средстве (автомобильном или железнодорожном) при температуре от минус 15 до плюс 40 °C. Допускается перевозить прибор авиационным транспортом в герметизированных отсеках.

Приборы допускается хранить в отапливаемых помещениях при температуре от 0 до плюс 40 °С и относительной влажности до 95 % без конденсации влаги.

Ставить прибор на длительное хранение следует с полностью заряженным аккумулятором.

5. Утилизация

Прибор подлежит утилизации по правилам действующего законодательства об утилизации электронной техники.

6. Сведения о предприятии-изготовителе

Реквизиты предприятия-изготовителя приведены в таблице 10.

Полное наименование	ООО «СКБ электротехнического приборостроения» (ООО «СКБ ЭП»)
Организационно-правовая форма	Общество с ограниченной ответственностью
Регистрационное свидетельство	87-1765 Серия ИРП от 24.07.96 г.
Почтовый адрес	Россия, 664033, г. Иркутск, а/я 407
Адрес Сервисного центра	Россия, 664033, г. Иркутск, ул. Лермонтова 130
Тел./факс	+7 (812) 500-25-48, +7 (3952) 719-148
E-mail	skb@skbpribor.ru
Сайт	<u>www.skbpribor.ru</u> , скбэп.рф

Таблица 10 – Реквизиты

Предприятие-изготовитель оставляет за собой право вносить изменения, не влияющие на метрологические и технические характеристики изделия.

Эксплуатационная документация, с внесенными изменениями, размещается на сайте ООО «СКБ ЭП» www.skbpribor.ru, скбэп.рф